

Elatorya 2021

E GOAL MANTRA

Get a Chance to Learn from India's Best Teachers & Crack JEE ADVANCED 2021

Vedantu's Eklavya 2021 is a Specialized Program for JEE ADVANCED, designed and headed by Co-Founder, IIT alumnus and Master Teacher Anand Prakash. Get mentored by **Top JEE Experts**, who have produced JEE Advanced **AIR 1, 2, 4, 7**, & many more.

Anand Prakash

Co-Founder, Vedantu IIT- Roorkee

Our Previous **EKLAVYANs** & Their Achievements

Student Name	Main Rank → Advanced Rank
Chirag Jain	731 > 41
Prakhar Agrawal	445 177
Tanmay Gangwar	2133 > 227
Aditya Kukreja	1772 635
Eknoor Singh	3574 1243
Aditya Gupta	14275 1326

547 JEE Advanced Selections in 2020

JOIN NOW

Vedantu

Study Materials

- JEE Main & Advanced Free Study Material
- NEET UG Free Study Material
- NCERT Solutions for Class 1 to 12
- NCERT Books PDF for Class 1 to 12
- ICSE & ISC Free Study Material
- Free Study Material for Kids Learning (Grade 1 to 5)
- Olympiad Free Study Material
- Reference Books (RS Aggarwal, RD Sharma, HC Verma, Lakhmir Singh, Exemplar and More)
- Previous Year Question Paper CBSE & State Boards
- Sample Papers
- Access All Free Study Material Here

THERMODYNAMICS

THERMODYNAMICS

Thermodynamics is concerned with the work done by a system and the heat it exchanges with its surroundings.

When the system is taken quasistatically from the equilibrium state i to another equilibrium state f, the total work done by the system is

$$W = \int_{V_i}^{V_f} P \ dV$$

The work is represented by the *area under the curve*. If $V_f > V_i$, the work done by the gas is *positive*. If the volume *decreases*, the work done by the gas is *negative*.

FIRST LAW OF THERMODYNAMICS

We know that both the total work done W and the total heat transfer Q to or from the system depend on the thermodynamic path. However, the difference Q - W, is the same for all paths between the given initial and final equilibrium states, and it is equal to the change in internal energy ΔU of the system.

$$\Delta U = Q - W$$

APPLICATIONS OF THE FIRST LAW OF THERMODYNAMICS

$1 \rightarrow 2$	Isothermal Expansion	$\Delta U = 0$ $W_1 = Q_1 = nRT \ln \frac{V_2}{V_1} \text{ (positive)}$
$2 \rightarrow 3$	Adiabatic Expansion	$Q = 0$ $W_2 = -\Delta U = \frac{nR\Delta T}{1 - r}$
$3 \rightarrow 4$	Isothermal Compression	$\Delta U = 0$ $W_3 = Q_2 = nRT \ln \left(\frac{V_4}{V_3}\right) \text{(negative)}$
4 → 1	Adiabatic Compression	$Q = 0$ $W_4 = -\Delta U = \frac{nR\Delta T}{1 - r}$

Important

1.
$$C_p - C_v = R$$

$$2. \qquad \frac{C_p}{C_v} = \gamma$$

(d) Isothermal Process

In an isothermal process, temperature of the system remains constant. For an ideal gas the equation of the process is given by

$$PV = nRT$$

= constant

Work done in an isothermal process is given by

$$W = \int_{V_i}^{V_f} P dV = nRT \int_{V_i}^{V_f} \frac{dV}{V}$$

or
$$W = nRT \ln \left| \frac{V_f}{V_i} \right|$$

PV diagram of isothermal process

- (a) Isothermal expansion
- (b) Isothermal compression

Since temperature of the system remains constant, therefore, there is no change in internal energy.

$$\Delta U = nC_{\nu}\Delta T = 0$$

(e) Adiabatic Process

In an adiabatic process, the system does not exchange heat with the surroundings,

i.e.
$$Q = 0$$
.

For an ideal gas the equation of the adiabatic process is

$$PV^{\gamma}$$
= constant

Where, γ is the adiabatic exponent.

Work done:
$$W = \int_{V_i}^{V_f} P dV$$

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

- Learn from the Master Teachers India's best

Register for FREE

Limited Seats!